# Interference of Light



### Introduction

 Definition - When two waves are simultaneously excited under certain conditions, the wave superimpose to produce on a screen alternate darkness and brightness. This phenomenon is known as Interference.

### **Refraction of Light**

Light path bends at interface between two transparent media of Different indices of refraction (densities)



Snell's Law

$$\frac{\text{Sin}\theta_1}{\text{Sin}\theta_2} \, \frac{\text{V}_1}{\text{V}_2} \, \frac{\text{N}_2}{\text{N}_1}$$

N - Refractive index of material

 $N \ge 1$ 

| Materials     | Ν      |
|---------------|--------|
| Air           | 1.0003 |
| Water         | 1.33   |
| Lucite        | 1.47   |
| Immersion oil | 1.515  |
| Glass         | 1.52   |
| Zircon        | 1.92   |
| Diamond 2.42  |        |

### under certain conditions

- 1) Two waves must be
  - Monochromatic in nature.
- 2) Two waves must be coherent.
- 3) Two waves must be nearly equal amplitude.
- 4) Amplitude of the waves should be small.

Single
Wavelength
: Single
Color

## Two waves must be coherent.

- Means Two Waves Are Having Same Phase with respect to each other.
- One Monochromatic to illuminate barrier containing two small slits.
- Light Emitting from two slits is coherent
- Two slits used to separate original beams into two parts.

To Produce
Two
Coherent
Waves





#### Interference in Thin Film due to Reflected



• Path Difference =

Interference in Thin Film due to Reflected Light M R R'

### **QRX**



QM = 2 d/Cosr \* Sinr Sini

```
Path Diff. = \mu ( d/Cosr + d/Cosr )-2d/Cosr SinrSini
            = 2 \mu d/Cosr - 2 d/Cosr Sinr \mu Sinr
                                     (μ= Sini/Sinr)
            = 2 \mu d/Cosr - 2 \mu d/Cosr Sin^2r
           = 2 \mu d / Cosr (1 - Sin^2r)
           = 2 \mu d/Cosr * Cos^2r
           = 2 \mu d/Cosr
Total P. D. = 2 \mu d / Cosr \pm \lambda / 2
```

### i) For Bright region or maxima: P. D. = n λ

$$2 \mu d/Cosr \pm \lambda/2 = n \lambda$$

$$2 \mu d/ Cosr = (2n \pm 1) \lambda/2$$
;

P. D. = Odd multiple of  $\lambda/2$ 

### ii) For Dark region or minima: P. D. = $(2n \pm 1) \lambda/2$

$$2 \mu d/ Cosr \pm \lambda/2 = (2n \pm 1) \lambda/2$$

$$2 \mu d/Cosr = n \lambda$$
;

P. D. = Odd multiple of  $\lambda$ 



